agena > >

Crash Course

by Alexander Walz

What is Agena ?

Agena is an interpreted procedural programming language.
It can be used in scientific, scripting, and many other applications.

lts syntax looks like very simplified Algol 68 with elements taken from
Maple, Lua and SQL, and some other languages.

Binaries are available for Solaris, Mac OS X, Windows, OS/2 — ArcaOsS,
Linux, Raspberry Pi, and DOS.

Agena is Open Source, thus it is free.
The implementation is based on the ANSI C sources of Lua 5.1.
Sources and binaries are available at:

http://agena.sourceforge.net
agena » >

Contents, 1

= [nstalling Agena

= Running Agena

= AgenaEdit

= First Steps

= Names & Assignment

= Data Types
= Integral & Rational Numbers
« Complex Numbers
= Arithmetic
= Strings

3 agena »>

Contents, 2

= Data Types, cont.
= Boolean Expressions & Relations
= Tables
= Arrays
= Dictionaries
= Sets
« Sequences, Registers & Pairs
= Write-Protection

= Control Statements
= if Statements & if Operator
= case Statements
= onsuccess Clause

. agena »>

Contents, 3

= Loops
= for Loops
= while Loops
= do .. as, do .. until, and do .. od Loops
« Combined for/while Loops
= for/as and for/until Loops
= Conditional for Loops
= Loop Control

= Procedures
= Procedures
= Local Variables
= Variable Number of Arguments

. Options agena >>

Contents, 4

= Procedures, cont.
= Error Handling & Error Traps
= Type Checking
= Predefined Results
= Efficient Recursion
= State Tables
= Functions as Binary Operators
= Short-cut Procedures
= Object-Oriented Programming
= Functional-Style Programming
= with and Related Statements
= Syntactic Sugar

6 agena »>

Contents, 5

= Printing
= Did you know ?

= Miscellaneous
= Precedence
« Mathematical Operators
= Mathematical Functions
« Mathematical Constants
= String Functions & Operators
= Packages

= Excurse: Doing Math with Agena

7 agenda > >

agena >>

Getting Started

Installing Agena

In Solaris, OS/2 — ArcaOS, Linux, Windows, and Mac OS X, the
respective installer automatically installs and sets up Agena.

You do not have to add further settings yourself after installing the
binaries.

Information on how to install the DOS and Windows portable version is
included in the manual or the respective read.me files.

agena »>

Running Agena

= |In Windows and OS/2 - ArcaOS, simply click the >> icon in the
programme group to start the interpreter.

In Solaris, Linux, Mac and DOS, type agena in a shell.
Terminal

Window Edit Options Help

ASEMA > 1.0 Interpreter as of August 13, 2010
See http: Afagena.sourceforge,. net for news and updates, Type “bye™ to quit,
TEE" 160 KBytes of phwsical RAM free,

»osQprt{—1+0%1I);
I

x

Statements can be entered right after the '> ' prompt.

o agena >>

11

AgenakEdit, 1

AgenakEdit is an editor providing syntax-highlighting and a runtime
environment for Windows, Solaris and Linux. It can be started by
entering agenaedit in a shell.

5

File Edit Search Run Help

Untitled (modified)

1 import gdi
f 1= << x ->» sin(exp(x)) >>
for i from -2 to 3 by 0.25 do

print(i, £{i})

2
3
4
5
B
7 od
8

9

gdi.plotfn(f, -2, 3, res=300:200)

> (3) AGENA == 4.0.0 (Done) = &
-2 0.13492253604164
-1.75 0.17290067661259
-1.5 0.221283264302
-1.25 0.28260122826374
-1 0.35896375654125
-0.75 (.45499405857531 agena >> plot - O
-0.5 0.57002038031004 T.
-0.25 0.70242637415473
0 0.8414709848079
0.25 0.95916224353754
0.5 0.99696538761387 0 | | 3
Wada U.oo%oUsbobo /iVod 0 III J ! l | | rl
1 0.41078129050291 ' ' 1
1.25 -0.341723600856042
1.5 -0.973506508277232
1.75 -0.50430891787801
2 0.89385405481281
2.25 -0.082916282871071 11
2.5 -0.37451778437489
2.75 0.065284915822129
3 0.94447100892628
Close

agena »>

12

Agenakdit, 2

Type your programme in the editor window and press F5 to run it.

Mark consecutive lines in your programme with a mouse or the keyboard
and press F6 to execute only these lines.

During computation, press the break™ button to interrupt the current
computation.

Press the ‘restart button to clear all variables.

Save or open your programmes using the File’ menu in the editor
window.

Just browse through the menu items for the other features.

agena »>

13

First Steps, 1

Any valid Agena code can be entered at the console with or without a
trailing colon or semicolon:

= |If an expression or statement is finished with a colon, it will be
evaluated and its value printed at the console. (This is not supported
iIn AgenakEdit, use the print function instead.)

= If the expression ends with a semicolon or neither with a colon nor a
semicolon, it will be evaluated, but nothing is printed.

You may optionally insert one or more white spaces between operands
In your statements.

Assume you would like to add the numbers 1 and 2 and show the result.
Just type:

> 1 + 2

3

agena »>

14

First Steps, 2

If you want to store a value to a variable, type:

> Cc := 25;

Now the value 25 is stored to the name c, and you can refer to this
number through the name c in subsequent calculations.

Suppose that ¢ is 25° Celsius. If you want to convert it to Fahrenheit,
enter:

> 1.8*c + 32:
77

The cls statement clears the screen, restart clears all values, and bye
quits the interpreter.

agena »>

Names & Assignment

= A name always begins with an upper-case or lower-case letter or an
underscore, followed by one or more upper-case or lower-case letters,
underscores or numbers in any order.

= Use the assignment operator := to store a value to a name.

> a := 1;

> varl := 'hello world';

= Delete a value by assigning it to null or use clear:

> a := null;

> clear varl;

. agena >>

Assignment, 2

= Compound assignment is supported in three fashions: > & 1= chty
> a = 1; > a = 1; > a = 1; > a = 1; i - g:
> inc aj; > inc a, 2; > a +:= 1; > a +:= 2; A e
> a > a > a > a A o
i ° ’ 3 2 1
Function Statement Compound > ¢ 1= 1;
> a = ++C;
. a e
Subtraction dec —:= . a <2?
Multiplication mul %=
> a = ——C;
Division div /=
o > a, C
Modulo mod S:=] .

10 agena »>

agena >>

Data Types

Integral & Rational Numbers

= Numbers can be represented like in the following examples.

= Integers:

> —1:
-1

= More than one value can also be printed at one line:

> 0, 1L, 1.0, 1L, 1L.0:¢
0 1 1 1 1

= Rational numbers:

> 3.141592654, -1.0:
3.141592654 -1

= Scientific notation:

> 10e-3, -1e3, 2.3e3:
0.01 -1000 2300

. agena >>

Complex Numbers

= There are two notations to represent complex numbers.

= The | operator:

> 1'2, -1.1'-2, 3!0:
1+2*I -1.1-2*I 3
The | operand:
> 1+2*I, -1.1-2*I, 3+0*I:
1+2*I -1.1-2*I 3
= Real part:
> real (1+2*1):
1

= |Imaginary part:

> imag (1+2*1):
2

19

agena »>

Arithmetic, 1

= Agena allows to mix rational and complex numbers in calculations.

= Addition, subtraction, multiplication, division, and integer division:

rational complex/mixed
2 + 3 24+3*T + 1!2

2 - 3 2 - 3+1*1I

2 * 3 a2z = 3=l

2/ 3 2'0 / 311

2 \ 3 2'0 \ 3!1

= Examples:

> 2+3, 2!0/3!'1, 2 + 3!1:
5 0.6-0.2*1I 541

20 agena » >

Arithmetic, 2

= Modulus (for rational numbers only):

> 2 % 3:
2

= Exponentiation with rational or integer power:

> 2~ 3.1, 2 7~ 3:
8.5741877002903 8

= Exponentiation with integer power only (faster):

> 2 wWwW Fg
38

5 agena >>

Strings, 1

= Strings can be enclosed in single or double quotes. There is no
difference in meaning.

> 'this is a text':
this 1s a text

> "this is a text":
this 1s a text

= (Concatenation of two or more strings:

> '"Hello '" & 'world':
Hello world

> a := 'Hello ’;
> a &:= "World’;

a:
Hello World

22 agenda > >

Strings, 2

= Substrings:

> str := 'abcd';

> str[2]:
b

> str[2 to 3]:
bc

> str[2 to —-1]: # from 2™ to last character
bcd

> str[-1]: # last character
d

> str[-2 to -1]: # last two characters
cd

23 agena » >

Boolean Expressions & Relations, 1

= Agena supports the logical values true and false, also called Booleans'.
A third Boolean constant named fail indicates an error.

= Any condition, e.g. a < b, results to one of these logical values.

= Relational operators are:

Relation Operator
less than <
greater than >
less or equal <=
greater or equal >=
equality =
inequality <>

o4 agena >>

25

Boolean Expressions & Relations, 2

Logical operators are:

Relation Operator Relation Operator
Boolean and and Boolean nand nand
Boolean or or Boolean nor nor
Boolean complement not Boolean exclusive-or XOr

> 1 < 2:

Lrue

> 1 < 2 and 1 = O0:
false

> true xor false:
true

agena »>

Boolean Expressions & Relations, 3

= |f you add, subtract, multiply or divide a Boolean - or a relation that
evaluates to a Boolean - with a number, then “true” will represent

number 1 and “false" 0.

= Thus, you can comfortably write statements without having to use if
conditions, for example:

> return (x > 0)*x;

> return if x > 0 then x else 0 f£3i;

agena »>

26

Tables, 1

= Tables are used to represent more complex data structures. Tables
consist of zero, one or more key-value pairs: the key referencing to the
position of the value in the table, and the value the data itself.

= Tables can contain other tables, as well.

> tbl = | > tbl = |

> 1 ~ ['a', 7.717, > ['a', 7.71],

> 2 ~ ['b', 7.70], long form > ['b', 7.70], short form
> 3 ~ ['c', 7.59] > ['c', 7.59]

>]; > 15

= To get the data with key 1, input:

> tbl[1]:
(a, 7.71]

27 agena » >

Tables, 2

= To get the second entry in the subtable, enter:

> tbl[1l, 2]:
7.71

= There are two forms to create empty tables.

> tbhl = [];

> create table tbl;

= Tables can even be nested:

> [1, [2, [3]]]:
[1, [2, [3]1]]

= The size operator returns the size of a table or any other structure.
28 agena » >

Tables, 3

= To select a sequence of elements in a table, use the to notation:

> tbl[1l to 2]:
[la, 7.71]1, [b, 7.7]]

= When trying to index a null value with square brackets, Agena returns an
error. When using curly brackets, however, Agena just returns null.

> thbl := null;

> tbl[1]:
Error in stdin at line 1:
attempt to index global " tbl (a null value) with a number value

Stack traceback:
stdin, at line 1 in main chunk

> tbl{1l}, tbl{l to 2}:
null null

29 agena » >

= Tables with positive integral keys are called arrays.

> tbl := [10, 11, 12];

= Values can be inserted into arrays in two ways:

> tbl[4] := 'a'; tbl[5] := 'b';

> insert 'a', 'b' into tbl;

= Values can be deleted like this:

> tbl[1l] := null;

> delete 'a', 'b' from tbl;

30 agena »>

31

Dictionaries

Another form of a table is the dictionary which indices can be any kind of
data - not only positive integers. Key-value pairs are entered with quoted
keys and tildes, or with unquoted names and =.

> dic := ['donald' ~ 'duck', mickey = 'mouse'];

As with arrays, indexed names are used to access the corresponding
values stored to dictionaries.

> dic['donald']:

duck

If a table key is a string, you can also use the notation:

> dic.donald:
duck

agena »>

32

Sets are collections of unique items: numbers, strings, and any other
data except null. Any item is stored only once.

> s := {'donald"',
{donald, mickey}

'mickey',

'donald'}:

If you want to check whether 'donald’ is part of the set s, just index it as

follows:

> s['donald']:
true

> s['daisy']:
false

agena »>

33

If you want to add or delete items to or from a set, use the insert and
delete statements.

> insert 'daisy'

> delete 'daisy'

into s;

from s;

The in operator also checks whether an item is part of a set.

> 'donald' in s:
true

> 'daisy' 1in s:
false

Sets consume around 40 % less memory than tables.

agena »>

Sequences, 1

= Sequences can hold any number of items except null.

> s := seq(l, 1, 'donald', true):
seq(l, 1, donald, true)

= You can access the items the usual way:

> s[2]:
donald

= Values can be added as with tables.

> s[4] := {1, 2, 2};

> insert [1, 2, 2] into s;

y agena >>

35

Sequences, 2

ltems can be deleted by setting their index position to null, or by applying
delete.

> s[4] := null;

> delete [1, 2, 2] from s;

The in operator checks whether a sequence contains a given item.

> 'donald' in s:
donald

Sequences are twice as fast when adding values than tables.

agena »>

Registers, 1

= Registers are fixed-size arrays that also can store nulls.

> r := reg(null, 1, 'donald', true):
reg(null, 1, donald, true)

= You can access the items the usual way:

> r[3]:
donald

= |f a value is deleted, the size of the register will not change:

> r[2] := null;

> r:
reg(null, null, donald, true)

36 agena »>

37

Registers, 2

Registers have a pointer to the top of a register that can be changed so
that data above the value of the top pointer can be hidden:

> registers.settop(r, 3); print(r, registers.gettop(r));
reg(null, null, donald) 3

Registers can be created with a predefined number of elements:

> create register r(8);

> r:
reg(null, null, null, null, null, null, null, null)

The size of a register can be changed with the registers.reduce and
registers.extend functions.

agena »>

38

Pairs

Pairs hold exactly two values of any type (including null and other pairs).

> p := 10:11;

The left and right operators provide read access to its left and right
operands; the standard indexing method using integers is supported, as
well:

> left(p)/ right(p)/ p[l]/ p[2]:
10 11 10 11

The left and right operand of a pair can be changed as follows:

> pl[l] := -10;

agena »>

Write-Protection

= The freeze function write-protects a table, set, sequence, register, pair or
userdata from modification.

= The unfreeze function removes the write-protection again.

39 agena »>

agena >>

Control Statements

if Statement, 1

= (Conditions can be checked with the if statement. The elif and else
clauses are optional. The closing fi is obligatory.

if 1 < 2 then
print ('valid"')
elif 1 = 2 then
print ('invalid"'")
else
print ('invalid, too')
fi;
valid

vV V. V V V V V

= A short form is also available if only one statement shall be executed
and no else clause is needed:

> 1 < 2 ? print('valid'")
valid

y agenda >>

if Statement, 2

= |f statements also support simple assignments in the conditions, even in
elif clauses. If the right-hand side evaluates to neither false, fail nor null,
then the corresponding then part will be executed.

= Compare:

flag := io.read();

if flag then
print (flag)

fi;

vV V V V

V

if flag := 1o.read() then
print (flag)

V

> fi;

i agena >>

if Statement, 3

= Assignments and the actual check can be combined in the if clause:

> 1f Inx := 1In(l), 1lnx >= 0 then
> print (1lnx)

> fi;
0

i3 agena >>

If Operator, 1

= The if operator checks a condition and returns the result:

> result := if 1 < 2 then 'valid' else 'invalid' fi;

> result:
valid

= An optional preceding with clause allows to define one or more auxiliary
variables that are local to this operator only:

> X := Pi;
> a := with n := 2*x -> if x < 0 then n else 2*n fi;
> b := with m, n := x, 2*x —> if x < 0 then m else n fi;

= You can also add one or more elif clauses.

“ agena >>

if Operator, 2

= The extended version of the if operator is similar to the if statement. Note
the sequence 'if is" and the obligatory return expressions in the bodies;
elif's and else’s are optional, as are the statements in the bodies.

> a := 10;

> sgn := if is a < 0 then # determines sign of " a'

> print ('I am negative');

> [further statements ...]

> return -1

> elif a = 0 then

> print ('I am zero'); # just one statement
> return O

> else # no statement

> return 1

> fi;

V

sgn:

s agena >>

case Statements, 1

= The case statement facilitates comparing values and executing
corresponding statements.

> c := 10;

> case C

> of -1 then # one value to be compared

> print ('negative')

> of 0, 1 then # multiple values to be compared
> print ('non—-negative')

> of 2 to infinity # a range

> print ('non-negative, too')

> else

> print ('negative, too')

> esle # this keyword is optional, just a beautifier
> esac;

non-negative, too

15 agena >>

case Statements, 2

= A variant works like the if statement and may improve readability of
code.

> x := 10;

> case
> of x < 0 then return -1
> of x = 0 then return O

> else return 1

> esac

1

“ agena >>

onsuccess Clause

= Both if and case statements support an optional onsuccess clause. If at
least one of the conditions evaluated to true, then the statements in the
onsuccess clause are also executed.

> ¢c := 'agena'; flag := false;

case C
of 'agena' then
print ('Agena !'")
of 'lua' then
print ('Lua !")
onsuccess
flag := true
else
> print ('Another programming language !'")
> esac;
Agena !

>
>
>
>
>
>
>
>

> flag:
true

.8 agena >>

Alternative end Clause

= You can now use the end token instead of the closing fi, od, esac, yrt
and epocs keywords. Examples:

> 1f 1=1 then print (true) else print(false) end;

> for 1 to 10 do
> print ('Agena !'")
> end;

4 agena >>

agena >>

for Loops, 1

= A for loop iterates over one or more statements.

= A numeric for loop begins with an initial numeric value (from clause), and
proceeds up to and including a given numeric value (to clause). The step
size can also be given (step clause). The od keyword indicates the end
of the loop body.

= The current iteration value is stored to a control variable (i in this
example) which can be used in the loop body.

> for i from 1 to 3 by 1 do
> print (i, 172, 1i73)

> od;

1 11

2 4 8

3 9 27

. agena > >

for Loops, 2

= The from and step clauses are optional.
= |f the from clause is omitted, the loop will start with the initial value 1.

= |f the step clause is omitted, the step size will be 1.

> for 1 to 3 do
print (i, 172, 1i73)

52 agena > >

for Loops, 3

= The value of the control variable can be accessed outside the loop.

= Since after the last iteration, the control variable is internally increased
by the step size a very last time, its contents is:

> for 1 to 3 do
> result := 172
> od;

> i

53 agena »>

for Loops, 4

= Afor/in loop iterates over all values in a table, set, and sequence. With
strings, it iterates over each character from the left to the right.

> for 1 in ['Agena', 'programming', 'language'] do
> print (i)

> od

Agena

programming

language

for 1 in 'Agena' do print(i) od

>
A
g
e
n
a

54 agena >>

for Loops, 5

= You can also iterate over the keys of a table (or sequence) or both keys
and values:

> for keys i in ['donald' ~ 'duck', 'daisy' ~ 'duck'] do
> print (i)

> od;

daisy

donald

> for i, j in ['donald' ~ 'duck', 'daisy' ~ 'duck'] do
> print (i, 3J)

> od;

daisy duck

donald duck

55 agena »>

while Loops, 1

= A while loop first checks a condition and if this condition is true or any
other value except false, fail, or null, it will iterate the loop body again
and again as long as the condition remains true.

= The following statements calculate the largest Fibonacci number less
than 1000.

> a := 0; b :=1;

> while b < 1000 do
> cC :=Db; b :=a + b; a := ¢
> od;

> C:
9877

56 agena »>

while Loops, 2

= A simple assignment can also be done in the while condition. This allows
for shorter code. If the right-hand side evaluates to neither false, fail or
null, then the loop body will be executed.

= Just compare the following two statements.

> flag := true;

> while flag do

> flag := io.read();

> if flag = 'Z2' then break fi
> od

> while flag := io.read() do

> if flag = 'Z' then break fi
> od

57 agena > >

while Loops, 3

= You can combine an assignment and a conditional check in the while
clause: When doing so, the assignment is redone each time flow control

returns to the top of the loop, and the condition is checked again, as
well.

i := 0.3;

while logn := 1In(i), logn < -0.9 do
print (i, logn); 1 +:= 0.1

od;

.3 -1.2039728043259

.4 -0.91629073187416

O OV V V V

58 agena »>

do .. as & do .. until Loops

= Variations of while are the do .. as and do .. until loops which check a
condition at the end of the iteration.

= Thus — contrary to while loops - the loop body will always be executed at

least once.
> c := 0; c := 0
> do > do
> inc c > inc c
> as ¢ < 10; > until 1 = 10;
> @y > C:
10 10

59 agena »>

do .. od Loops

= [nfinite loops are Support by do .. od loops, a syntactic sugar for "while

true do .. od".
> c := 0
> do
> inc c;
> if ¢ > 9 then break fi
> od;
> C
10

= See the Loop Control” sheet on how to exit these loops.

60 agena »>

Combined for/while Loops

= All flavours of for loops can be combined with a while condition. As long
as the while condition is satisfied, i.e. is true, the for loop iterates.

> for x to 10 while 1In(x) <= 1 do
> print(x, 1n(x))

> od;

10

2 0.69314718055995

= Likewise, the until condition quits the loop:

> for x to 10 until In(x) > 1 do
> print (x, 1n(x))

> od;

10

2 0.69314718055995

9 agena >>

62

for/until and for/as Loops

for loops can also be combined with a closing until or as condition.

w NN =V VOV

w NN = VOV

for x to 10 do
print (x)
as x < 3;

for x to 10 do
print (x)
until x = 3;

agena >>

Conditional for Loops

= This variant initialises a new local control variable, checks a while or until
condition and then executes the loop body.

= You have to explicitly change the loop control variable in the body which
allows for adaptive step sizes during a computation, for example when
examining oscillatory functions with varying interval lengths.

> for 1 := 1 while 1 <= 3 do print(i); i +:= 1 od
1

2

3

> for 1 := 1 until 1 = 4 do print(i); 1 +:= 1 od
1

2

3

63 agena » >

Loop Control, 1

= Agena features three statements to control loop execution. The following
two are applicable to all loop types.

= The skip statement causes another iteration of the loop to begin at
once, thus skipping all of the following loop statements after the skip
keyword for the current iteration.

= The break statement quits the execution of the loop entirely and
proceeds with the next statement right after the end of the loop.

for i to 5 do

if 1 = 3 then skip fi;
print (1)
if i = 4 then break fi

>
>
>
>
> od;
1
2
4

o4 agena >>

Loop Control, 2

= skip and break can also be combined with when or unless conditions:

for 1 to 5 do

skip when 1 = 3;
print (i) ;
break when 1 = 4

>
>
>
>
> od;
1
2
4

> for i to 5 do
skip unless 1 <> 3;
print (1) ;
break unless 1 <> 4
od;

=~ NN R VOV YV

65 agena » >

Loop Control, 3

= The redo statement restarts the current iteration of a for/to or for/in loop
from its beginning, without incrementing the loop control variable or
processing the next item in a structure.

> flag := true;

for 1 to 3 do

print (1) ;

if flag and 1 = 2 then
flag := false;
redo

od;

>
>
>
>
>
> fi
>
1
2
2
3

66 agena » >

Loop Control, 4

= The relaunch statement, however, restarts a for/to or for/in loop
completely.

> flag := true;

> for 1 to 3 do

> print (i) ;

> if flag and 1 = 2 then
> flag := false;

> relaunch

> fi

> od;
1
2
1
2
3

67 agena > >

agena >>

Procedures

Procedures, 1

= Let us write a procedure to compute the factorial of an integer.
= A procedure can call itself to generate the final result.
= The return statement passes the result of a computation.

= The procname keyword is substituted by the name with which the
procedure was invoked.

> factorial := proc(n) is # factorial of an integer
> if n < 0 then return fail

> elif n = 0 then return 1

> else return procname (n-1)*n

> fi

> end;

> factorial(4):
24

69 agena »>

Procedures, 2

= Alternatively, a function can be defined with the procedure statement.

> procedure factorial (n) is # factorial of an integer
> if n < 0 then return fail

> elif n = 0 then return 1

> else return procname (n-1)*n

> fi

> end;

> factorial (4):

24

You can put the local keyword before the procedure keyword to define
local procedures.

70 agena » >

Local Variables

= Alocal variable is known only to the respective procedure and the block
where it has been declared.

= |t cannot be used in other procedures, the interactive Agena level, or
outside the block where it has been declared.

> factorial := proc(n) is

> local result;

> result := 1;

> for 1 from 1 to n do result := result * i od;
> return result

> end;

> factorial (10):

3628800

5 agena >>

Variable Number of Arguments

= |f you want to pass a variable number of arguments, use the ? keyword
In the parameter list.

= The varargs system table contains all variable arguments passed with
the ? facility. Values can be accessed like with any other table.

= The system variable nargs contains the number of arguments passed
(both with the ? facility and without).

> £ := proc(?) is

> return nargs, varargs, varargs|[1l]
> end;

> £ ('Beowulf', 'Grendel'):

2 [Beowulf, Grendel] Beowulf

72 agena » >

73

Options, 1

A function does not have to be called with exactly the number of
parameters given at procedure definition.

You may optionally pass less or more values at run-time. If no value is
passed for a parameter, then this parameter will automatically be set to
null at function call.

> f := proc(a, b, c) is
> return a, b, c
> end;

> £ (1) :
1 null null

If you pass more arguments than there are actual parameters, excess
arguments will be ignored.

agena »>

Options, 2

= Let us build an extended square root function that either computes in the
real or complex domain. By default, i.e. if only one argument is given, the
real domain will be chosen, otherwise you may explicitly set the domain
using a pair as a second argument.

> xsgrt := proc(x, mode) 1is

> if nargs = 1 or mode = 'domain':'real' then
> return sqgrt (x)

> elif mode = 'domain':'complex' then
> return sgrt(x + 0*I)

> else

> return fail

> fi

> end;

> xsqgrt(-2):

undefined

> xsqrt (-2, 'domain':'real'):

undefined

74 agena >>

Options, 3

= |f the left-hand value of the pair in a function call shall denote a string,
you can spare the single quotes put between the string by using the =

token which converts the left-hand name to a string.

> xsqrt (-2, domain = 'complex'):
1.4142135623731*1

75 agena » >

76

Error Handling & Error Traps

The error function issues an error:

> if 1 = 1 then error('Oops !') fi
Oops !

Stack traceback: in error
stdin, at line 1 in ~ (null) in = (null) "

The try/catch statement catches errors:

> success, s := true, null;

> try

> print(s[1l]) # provoke an error by indexing null
> catch in msg then

> success := false

> yrt;

> success:

false

Alternatively, the protect function traps errors, as well.

agena >>

Type Checking, 1

= You can check the type of arguments passed in two ways:

= Query the type with the :: or :- (the negation) operators:

> f := proc(x) 1is

> if x :- number then error('no number argument') fi;
> return x

> end;

> f('men ne cunnon hwyder helrunan hwyrftum scripad.'):
wrong type of argument

= State the expected type in the parameter list:

> procedure f (x :: number) 1is
> return x
> end;

> f('men ne cunnon hwyder helrunan hwyrftum scripad.'):
Error in stdin:
invalid type for argument #1l: expected number, got string.

77 agenda > >

78

Type Checking, 2

Up to five types may be given when putting them in curly brackets:

> f := proc(x :: {number, complex}) is
> return tostring(x)

> end

> £(1!2)

1 2

Besides checking the arguments, the return can also be validated:

> f := proc(x :: number) :: number is
> return tostring(x)

> end

> £(1)

Error in stdin, at line 2:

"return value must be of type number,

got string.

agena >>

Type Checking, 3

= Numbers can be examined further with the keywords
« integer (any integral number),
= posint (positive integer),
» nonnegint (NONNnegative integer),
- positive (positive floats and integers),

= nonnegative (Nonnegative floats and integers).

> f := proc(x :: integer) 1is
> return x
> end

> £ (P1)
Error in stdin:
type integer expected for argument #1, got number.

79 agena » >

Type Checking, 4

= Function arguments can be checked further with the pre clause ...

f := proc(x :: number) 1is
pre x > 0 1is
return x

end

vV V V V

> £(0) :
In stdin at line 2:
Error in pre-condition: posture not satisfied.

= ... and the result with the post clause:

> f := proc(x :: number) 1is
> return post x > 0 with x
> end

> £ (0)
In stdin at line 2:
Error in post-condition: invalid return.

80 agena »>

Predefined Results

= Predefined results can be set with the rtable.defaults function by entering
them into a remember table.

= Agena will return the given predefined result if it exists and does not
compute it by executing the procedure body, so there is also an increase

In speed.
> rtable.defaults(fact, [# defaults for fact(0) .. fact(3)
> —-1l~undefined, 0~1, 1~1, 2~2, 3~6
> 1)
> fact(-1):
undefined
> rtable.defaults (fact):
(2] ~ 21, 11 ~ 11, 101 ~ [(11, (3] ~ [6], [-1] ~ [undefined]]

5 agena > >

82

Efficient Recursion

Agena will remember procedure results if the rtable.remember function is
invoked. An optional table of predefined results can also be given. This
speeds up recursive procedures significantly.

> fib := proc(n) 1is

> assume (n >= 0);

> return fib(n-2) + fib(n-1)
> end;

> rtable.remember (fib, [0~1, 1~17);

> £ib(50):
20365011074

For the differences between defaults and remember, check the manual
(Chapter 14.4). Chapter 6.18.1 describes the feature reminisce shortcut.

agena >>

83

State Tables

A table can be assigned to a function with the store feature. This internal
table is available during a whole session and you can read from and

write values to it in subsequent calls to the function.

)}
Q.
Q.

:= proc(x) 1is

feature store;

if x = null then # set default value zero
store[l] := 0

else
store[l] +:= X

fi;

return store[1l]

end;

V V.V V V V V V V

> add() :
0

> add (10):

10

agena >>

Functions as Binary Operators

= An ordinary function of two arguments can be called just like a binary
operator.

> plus := proc(x, y) 1s return x + y end;

> 1 plus 2:
3

= When using a function this way, it has always the highest precedence.

o4 agena >>

Short-cut Procedures, 1

= |f your procedure consists of exactly one expression, then you may use
an abridged syntax if the procedure does not include statements such as
If, for, insert, etc.

= Let us define a simple factorial function with one argument.

> factorial := << (x) —> exp(lngamma (x+1)) >>;

> factorial(4):
24

= A function with two arguments:

> sum = << (X, y) —> X + y >>;

> sum(l, 2):
3

85 agena »>

Short-cut Procedures, 2

= The with clause allows to define local variables.

> fact := << (x :: number)

> with n := 1

> -> exp(lngamma(x + n)) >>;

> fact := << (x :: number)

> with m, n := 0, 1

> -> exp(lngamma(x + n)) + m >>;

= Alternatively, you can define a function with the def or define statement:

> define sum (x, y) —> X + y >>;

> sum(l, 2):
3

86 agena » >

Object-Oriented Programming, 1

= Methods for tables can be implemented OOP-style using the @@
syntax:

> account := ['balance' ~ 0];

> proc account@@deposit(x) 1is
> inc self.balance, Xx;
> end;

> account@@deposit (100)

> account.balance:
100

> proc account@@withdraw(x) is
> dec self.balance, x
> end;

87 agena > >

Object-Oriented Programming, 2

= A constructor that created new accounts:

> proc account@@new (o) 1is

> setmetatable (o, self);

> self. index := self;

> return o

> end;

> a := account@@new(['balance' ~ 0]);

> a.balance:
0

88 agena »>

Obiject-Oriented Programming, 3

= |nheritance: here we define a new account class based on the one
defined above that does not allow overdrafts.

> creditaccount := account@@new() ;

> proc creditaccount@@withdraw(x) 1is

> if x > self.balance then error('Error, not enough credit.') fi;
> dec self.balance, x;

> return self.balance

> end;

> b := creditaccount@@new() ;

> bA@@withdraw (1000) :

Error, not enough credit.

= For more information, please check Chapter 6.24 of the Primer and
Reference.

89 agena » >

Functional-Style Programming, 1

= There are some functional-programming-style functions and operators
that spare you some lines of code, see Chapter 6.32 in the Primer &
Reference:
Function Features
map, @ applies a function on every item of a structure
select, $ returns all the elements that satisfy a Boolean condition
remove deletes all the elements
Zip combines two structures of equal size
addup approximates series
mulup computes products
foreach generates structures
times applies a function on intermediate results

90 agena »>

Functional-Style Programming, 2

Function Features
pipeline maps one or more functions on a structure

apply a function on each item of a structure or string and return
an accumulated - that is summed-up - result

factory. transforms a function with multiple arguments into a sequence of
curry single-argument functions

reduce, fold

o agena > >

with and Related Statements, 1

« The with statement unpack table values, indexed by string keys, declare
them local and then access them in the respective block. After leaving
the block, all the values listed right between the with and in tokens are
automatically written back to the table.

> zips := [duedo = 40210, bonn = 53111, cologne = 50667];
> with duedo, cologne in zips do

> duedo := 40237; # change duedo entry

> cologne := null # cologne will be deleted ©

> od;

> zZ1ps:

[duedo = 40237, bonn = 53111]

> duedo, bonn in zips; # equals duedo, bonn := zips.duedo, zips.bonn

> duedo, bonn:
402377 53111

92 agena > >

with and Related Statements, 2

= A flavour of the with statement allows to reference an entry by just an
underscore. It also allows to actively change values in the table.

> zips := [duedo = 4000, bonn = 5300]

> with zips do

> print (_.bonn) ;
> _.bonn := 53111
> od

5300

> zZ1ps:
[bonn ~ 53111, duedo ~ 4000]

93 agena »>

with and Related Statements, 3

= Yet another variant allows to easily define local variables to be used in a

block:
> with a, b := 1, 2 do
> c :=a + b
> od;

> print(a, b, c):
null null 3

o4 agena >>

95

Syntactic Sugar

Just an overview of some syntactic sugar available:

> break when x <> 0;
> 1f x <> 0 then break fi;

> skip when x <> 0;
> 1f x <> 0 then skip fi;

> return when x <> 0;
> 1f x <> 0 then return fi;

> return when x <> 0 with vy;
> 1f x <> 0 then return y fi;

break unless x = 0;
if x <> 0 then break fi;

skip unless x = 0;
if x <> 0 then skip fi;

return unless x = 0;
if x <> 0 then return fi;

return unless x = 0 with vy;
if x <> 0 then return y fi;

agena >>

96

Printing, 1

The print function writes values - numbers, strings, Booleans, tables, etc.
to the screen:

> print('sqgrt (', 2, ') ="', sqgrt(2)):
sqgrt (2) = 1.4142135623731

> print('sgrt (' & 2 & ') =" & sqgrt(2)):
sqrt(2) = 1.4142135623731

The printf function gives more control on the output format. In the
following example %d depicts an integer and %f a float.

> printf ('sgrt(%d) = S$f', 2, sqrt(2)):
sgrt(2) = 1.414214

agena »>

97

Printing, 2

To print 10 decimal (fractional) places of sqrt(2), we put .10 in front of the
f specifier:

> printf ('sgrt(%d) = %$.10f', 2, sqgrt(2)):
sqrt(2) = 1.4142135624

The %s formatter represents a string and %18.15f depicts a number with
a total of 18 digits (pre-decimal places plus the decimal dot plus the
fractional places), including 15 fractional places:

> printf ('%$s(%d) = $18.15f', 'sqgrt', 2, sgrt(2)):
sgqrt (2) = 1.414213562373095

For more information and examples, check Chapter 3.19 ‘Print Values’ in
the Primer and Reference.

agena »>

agena >>

Did you know ?

99

Did you know, 1 ?

If you do not like the default prompt, just enter something like:
_PROMPT := '$

You can load your own programmes into an Agena session by using the
run function (e.g. run 'progname.agn') or starting Agena from the
shell with agena -1 progname.agn.

If you want your self-written procedures, constants, etc. to be available
every time you invoke the interpreter, just put them into an agena.ini file
residing in your home directory.

Data you compute in a session can be stored to a file using the save
function, to be read into subsequent session later by read.

You can send and receive data on the TCP level across the Internet and
LANSs with the net package.

agena »>

Did you know, 2 ?

= Data stored in CSV and XML files can be imported with the utils.readcsv
and utils.readxml functions. See xml package, too.

= The way Agena outputs tables, sets, sequences, complex numbers, and
pairs can be changed by modifying the environ.aux.print* procedures in
the library.agn file located in the lib directory of your Agena installation.

= On some 64-bit flavours of Windows 2003 Server and Windows 2008
Server you may need to set the agena.exe binary file to Windows 2000
or Windows XP compatibility mode in order for the interpreter to start
successfully.

100 agena » >

agena >>

Miscellaneous

102

Precedence

Operator precedence follows the table below, from lowest to highest.

Prec
10

A~ O OO N 00 O

N W

Operators

Or XOr nor Xnor

and nand

< > <K= >= = == <> ~= ~<> 1o— |

in notin subset xsubset union minus intersect atendof |-
& : @ S S$S

+ — || " split inc dec

/% | <K<K >>> KKK >>>> && *% /% +% —-% %% symmod mul
div intdiv mod

not - +++ ——-

N kK

! ~~ and all other unary operators
agena » >

Mathematical Operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

A Exponentiation with rational power
** Exponentiation with integral power
% Modulus

\ Integer division

103 agena » >

Mathematical Functions, 1

Function Description

sin(x) Sine
cos(X) Cosine
tan(x) Tangent
sec(x) Secant
csc(X) Cosecant
cot(x) Cotangent

arcsin(x) Inverse sine

arccos(x) Inverse cosine

arctan(x) Inverse tangent
sinh(x) Hyperbolic sine
cosh(x) Hyperbolic cosine

104 agena » >

Mathematical Functions, 2

Function Description

tanh(x) Hyperbolic tangent
arcsinh(x) Inverse hyperbolic sine
arccosh(x) Inverse hyperbolic cosine
arctanh(x) Inverse hyperbolic tangent

sinc(x) Cardinal sine

cosc(x) Cardinal cosine

tanc(x) Cardinal tangent

exp(x) Exponentiation e”x

In(x) Natural logarithm
log(x, b) Logarithm of x to base b
sqri(x) Square root

105 agena » >

Mathematical Functions, 3

Function Description
cbrt(x) Cubic root
root(x, n) Non-principal n-th root of x
proot(x, n) Principal n-th root of x
hypot(x, y) Hypotenuse
gamma(x) Gamma function
Ingamma(x) Logarithmic Gamma function
fact(n) Factorial
erf(x) Error function
abs(x) Absolute value/magnitude
sign(x) Sign
entier(x) Rounds x downwards to the nearest integer

106 agena » >

Mathematical Functions, 4

Function Description
floor(x) Rounds downwards to the nearest integer (same as entier)
ceil(x) Rounds upwards to the nearest integer
int(x) Rounds to the nearest integer towards zero
frac(x) Fractional part
round(x, d) Rounds x to d-th digit
even(x) Checks for even number
odd(x) Checks for odd number

107 agena » >

108

Constant
Eps
DoubleEps
degrees
radians
Pi

Phi

Exp

I
infinity

undefined

Mathematical Constants

Agena features the following numeric constants, some of them are:

Meaning See g
Equals 1.4901161193847656e-08
Equals 1.084202172485504434e-19
180/Pi to convert radians to degrees
Factor Pi/180 to convert degrees to radians

Equals 3.14159265358979323846

Golden ratio (1 + sqrt(5))/2

Constant e = exp(1) = 2.71828182845904523536
Imaginary unit

Infinity

An expression stating that it is undefined, e.g. a singularity

agena »>

String Functions & Operators, 1

Function
&
In
notin
atendof
strings.find
strings.glob
strings.match
strings.hits
strings.include
strings.replace
strings.remove

109

Description

Concatenation operator

Searches for a substring

Checks whether a substring is not included
Checks whether a string ends in the given pattern
Searches for a substring, supports pattern matching
Matches patterns including ? and * wildcards
Looks for the match of a pattern

Number of occurrences of a substring pattern
Inserts a substring

Replaces substrings

Removes a substring

agena »>

String Functions & Operators, 2

Function
size
abs, char
empty/filled
split
strings.fields
strings.trim

strings.ltrim
strings.rtrim

tonumber
tostring
strings.format

110

Description

String length

ASCII code conversion

Checks for an empty/filled string

Splits a string into its words

Extracts given fields (columns) in a string
Removes leading and trailing white spaces

Remove all leading/trailing white spaces or a given character
or string

Converts a string to a number
Converts a number to a string
C-style formatting

agena »>

String Functions & Operators, 3

Function Description

strings.lower/

: Converts to lower/upper case
strings.upper

strings.capitalise/
strings.uncapitalise

strings.dleven Damerau-Levenshtein distance of two strings

Capitalises/uncapitalises a string

Compares two strings case-insensitively and returns an

Sz estimate of their similarity

strings.jaro Jaro(-Winkler) similarity of two strings
strings.shannon Shannon entropy indicators
regex.new Defines a regular expression pattern
regex.count Counts the number of matches
regex.find Searches a string with a regular expression

111 agena > >

String Functions & Operators, 4

Function Description
regex.match Looks for the first match of a regex-pattern in a string

112 agena > >

Packages, 1

= Agena features various packages.

Package Function
aconv GNU iconv port, to transform strings between codepages

ads Database specialised on storing and retrieving strings
bags Multisets, Cantor sets that count occurrences
bimaps Bi-directional maps
bloom Bloom filter for strings and numbers
astro Astronomical time and date functions
binio Functions for processing binary files
bytes Bits and bytes twiddling
calc Undergraduate Calculus package
clock Functions to process hours, minutes, and seconds

s agena >>

Packages, 2

Package Function
com RS-232 communication via COM ports
combinat Combinatorial functions
convert Physical unit conversion (lengths, weights, etc.)
cordic CORDIC numeric functions
cuckoo Cuckoo filter for strings
curses (n)curses binding to build terminal applications
div Fractions
dual Dual numbers
environ Access to the Agena environment
fastmath ~ Numeric approximations
fractals Various fractals & plotting routines, some FRACTINT support

114 agena > >

Packages, 3

Package Function

fzy Fuzzy string matching
gdi Graphics
gzip Read and write UNIX gzip compressed files

hashes String and number hashes
heaps Skewed & binary heaps plus AVL trees

ini INI file encoding & decoding (iniparser binding)
[0 Input/output functions for console and files
json JSON encoding & decoding
Kiss Fast Fourier Transform
linalg Undergraduate Linear Algebra
|list Linked lists

e agena >>

Packages, 4

Package Function
long 80-Bit Floating-Point arithmetic
lookup Lookup tables
maple Aliases to Maple functions
mapm Mathematical arbitrary precision library
math Additional mathematical functions
memfile String memory files

mp GNU Multiple Precision Arithmetic Library (GMP)
mpf GNU Multiple Precision Floating-Point Reliable Library (MPFR)
net IPv4-based exchange of data over the Internet or LANs

numarray Numeric C arrays
numtheory Number Theory

e agena >>

Packages, 5

Package Function

0S Functions to operate with the underlying operating system
rbtree Red-black binary trees
regex Regular expression matching (PCREZ2)

registers Functions for register administration
reqgistry Functions to access the registry

rtable Administration of remember tables
sema Unique integer IDs
skycrane Utilities and easy-to-use wrappers to some functions
stack Functions for stack operations
stats Statistical functions

strings Various string handling functions

117 agena > >

Packages, 6

Package Function

tables Functions specialised on table processing
tar Functions to list, read, and extract UNIX tar archives
utils Utility functions, e.g. CSV import and export
xbase xBase file support (i.e. dABASE (™ [l1+)
xml XML encoding & decoding (LuaExpat port)
ZX Sinclair ZX Spectrum numeric functions

g agena >>

119

Excurse: Doing Math with Agena

There are four packages for undergraduate mathematics:

calc — calculus,

= linalg — linear algebra,

= gstats — statistics,
combinat — combinatorics,
kiss — Fast Fourier Transform.

With the exception of kiss, all these aforementioned packages are built-
In, so you do not need the import statement to load them into a session.

As you will see, you actually do not have to know much about the
Interpreter to do some undergraduate math.

agena »>

Calculus, 1

= Define a function, for example f(x) = sin(x):

> f 1= << x —> sin(x) >>

= Print a table of values, with and without formatting:

> for x from -1 to 1 by 0.5 do > for x from -0.5 to 0.5 by 0.25 do

> print (x, f(x)) > printf ('%$+05.2f %+10.6f\n', x, f(x))
> od; > od;

-1 -0.8414709848079 -0.50 -0.479426

-0.5 -0.4794255386042 -0.25 -0.247404

0 0 +0.00 +0.000000

0.5 0.4794255386042 +0.25 +0.247404

1 0.8414709848079 +0.50 +0.479426

= Determine all the zeros over [-5, 5]:

> calc.zeros(f, -5, 5):
seqg(—-3.1415926535898, 0, 3.1415926535898)

120 agena » >

Calculus, 2

= Differentiate f at point O:

> calc.differ (£, 0):
1

= Evaluate the third derivative of f at point O:

> calc.differ(f, 0, deriv=3):
—0.99999999999983

Compute the minimum and maximum values on the interval [-10, 10],

> calc.minimum(£f, -10, 10):
seq(—7.8539816339745, -1.5707963267949, 4.7123889803847)

> calc.maximum(f, -10, 10):
seq(—4.7123889803847, 1.5707963267949, 7.8539816339745)

Ortry'calc.extrema(f, -10, 10).

121

agena »>

Calculus, 3

= Determine points of inflection and saddle points:

> calc.inflect (£, 0, Pi):
seq(0, 3.1415926535897878, 6.2831853071795827, 9.4247779607693847)

> calc.saddles (<< x —> x*3 >>, -1, 1):
seq(0)

= Integrate f over [0, Pi]:

> calc.integ(f, 0, Pi):
2

= Compute the series Sum(1/n!, n=0 .. 100) to return an approximation of
Euler's number:

> calc.fsum(<< n —> 1/fact(n) >>, 0, 100):
2.718281828459

122 agena » >

123

Linear Algebra, 1

Define two vectors in different fashions: In the simple form, just pass all
components explicitly; or pass only the non-zero components:

> a =<1, 2, 3 >:
<1, 2, 3 >

> b := vector (3, [1 ~ 2]):
<2, 0, 0 >

Check whether a and b are parallel and have the same direction:

> abs(a+b) = abs(a) + abs(b):
false

Set a vector component by indexing:

> b[3] = 1;

agena »>

Linear Algebra, 2

= Now read the modified vector and its rightmost component - a negative
integral index n depicts the |n|-th element from the right:

b:
2

>
<2, 0, 1 >

> a + b
< 3, 2, 4 >
> a — b

124 agena » >

125

Linear Algebra, 3

Scalar, dot and cross product:

14

< 2,

> 2 a:
< 2, 4,
> a * a:

Sy

> linalg.crossprod(a,

-4 >

b) :

The determinant:

-59

> linalg.det (A):

agena »>

Linear Algebra, 4

= Find the vector x which satisfies the matrix equation A x = b. The matrix
constructor expects row vectors.

> A = < <1, 2, -4 >, <2, 1, 3 >, < -3, 1, 6 > >
[1/ 2/ -4]

[2, 1, 3]

[_3/ 1/ 6]

> b 1= < -6, 5, -2 >:

< -6, 5, -2 >

> linalg.linsolve (A, Db):
< 2, =2, 1 >

126 agena » >

Statistics, 1

= First we define a distribution:

> s := seqg(l0, 8, 1, 6, 5, 2, 9, 7, 3, 4):
seq (10, 8, 1, 6, 5, 2, 9, 7, 3, 4)

= Minimum and maximum observations along with their position in the
distribution:

> stats.min(s) :
1 3

> stats.max(s) :
10 1

= Arithmetic mean:

> stats.amean(s) :
5.5

127 agena » >

Statistics, 2

= The median:

> stats.median(s):

5.5

= For the first quartile, the median and the third quartile of a distribution,
along with the minimum, the maximum observation, and the arithmetic
mean, in this order, enter:

> stats.fivenum(s) :

seqg(2.75, 5.5, 8.25, 1, 10, 5.5)

= Standard and absolute deviation:

> stats.sd(s):
2.872281323269

> stats.ad(s):
2.5

128 agena » >

129

Statistics & Combinatorics

Outliers:

> s := seg(-100, 8, 10, 1, 6, 5, 2, 9, 7, 3, 4, 1000):
seg(-100, 8, 10, 1, 6, 5, 2, 9, 7, 3, 4, 1000)

> stats.chauvenet (s):
seqg (1000, -100)

The Cartesian product:

> combinat.cartprod([[1, 2, 3], [30], [50, 100]1]):
(r, 30, 501, [, 30, 1001, [2, 30, 50], [2, 30, 1007,
[3, 30, 100]]

[3,

30, 507,

Combinations and number of combinations:

> combinat.chosse (3, 2):
(ex, 21, [1, 31, [2, 3]]

> combinat.numbcomb (3, 2):
3

agena >>

130

Combinatorics, 2

Permutations and number of permutations:

> combinat.permute([1l, 2, 3], 3):
(1, 2, 31, (i, 3, 21, (2, 1, 31, [2, 3, 1], I[3,

> combinat.numbperm (3, 2):
6

agena »>

Any Questions ?

. . m_
= For further information, please consult e i

= the Primer and Reference,
a manual explaining Agena on 1240+
pages

= the Quick Reference,
an overview of all the functions available

agena > >

A Programming Language

Frimoy and| Refeicnooe

= Both are available at

on & ranber, abe ol i ataciule willoe, ulum
Wmimhl’\ﬁlﬂﬂ“ﬂm B |l W

http://sourceforge.net/projects/agena/Manuals/ “;—"; : ﬁf:wfﬁ;z i

a
1 ewrigr 5 Ty aesDuRdn O & LNCDOe) 300 BEek B ol

(Take the last slash in its URL.) . e

[T juhahs = ceterrraren wierle’ foreben ndocde pha bl v

| ™ Igetmabraizl rebmm b bbbl of 8 rbcis

| GF I empTa] Tl Te: e L skl Typl O @ SR E OF proCedung
|3 has chunths wlwer @ hth o EOSknes. 86 ehirrend

| W haetabin chacka whntar n nciomm bam B remsmssr b
i‘rﬂ'\l\.‘ Chaxha whadtad i Lnhara Park I NHTETET Wit
EL i Tk W bl o2 i ©F i ol

| T (b BT NN LG A fureion ko pet S peesce

o
|t § =T S

131 agena > >

